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Tilted arrays of dendrites
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We report on the existence of tilted arrays of dendrites in solidification. It arises from a long-wavelength
instability of the infinite array. The connection to the parity-broken dendrites recently discovered is pointed out.
We show that the array is stable to short distance fluctuations explaining the existence of a stable envelope for

solidification patterns.

PACS number(s): 68.70.+w, 61.50.Cj, 64.60.—i, 64.70.Dv

The problem of dendritic growth is one of the classical
problems of pattern formation [1-4]. The major break-
through in this field occurred a decade ago with the solution
for the problem of the isolated dendrite. It was understood
that the microscopic dynamics (surface tension, anisotropy)
were singular perturbations which give rise to the solvability
conditions determining the velocity and shape of the dendrite
[5]. While the theory of the isolated dendrite is elegant and
amenable to an essentially complete analysis, in practice
(both experimentally and in simulations), the isolated den-
drite is not the generic morphology encountered. It is not
uncommon, for example, to find arrays of dendrites. The
theory for such arrays has been the subject of much investi-
gation over the years [6,7], nevertheless it continues to yield
surprises. The most recent such surprise was the discovery of
the parity-broken dendrite by Brener et al. [8]. An array of
mirror-image couples of parity-broken dendrites bifurcates
[9] from the arrays of symmetric dendrites. In this paper, we
demonstrate a new bifurcation to a tilted array as a result of
an instability of the array to an antisymmetric mode with
Bloch wave number k=0.

In this paper we will present the new tilted state, and
demonstrate how it arises from the above mentioned insta-
bility. The intimate connection of this state to the parity-
broken dendrite will then be elucidated. We will also relate
these states to their analogs in directional solidification. Fi-
nally, we will examine the implications of our stability analy-
sis of the dendritic array for general issues in the morphol-
ogy of solidification patterns.

A hint that tilted arrays are possible was provided by the
numerical simulations of the phase-field model of Kupfer-
man et al. [10] (Fig. 1). They observed the spontaneous for-
mation of such arrays by the following mechanism. Four
symmetric fingers grow in the direction of maximum surface
tension. At the 45° directions, the interface is unstable and
undergoes a periodic sequence of tip-splitting, emitting
asymmetric fingers which, driven by anisotropy, grow
steadily parallel to the main trunks. As these fingers are emit-
ted at constant intervals of time, they build up into a tilted
array of dendrites.

In order to investigate both tilted and untilted arrays of
dendrites, we consider the standard (one-sided) free bound-
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ary model describing crystal growth from a supersaturated
solution. Steady-state solutions at velocity v, {(x), satisfy
the stationary equation

A=2pj:odx’ Glx,d(x)sx’,{(x)]

0 oG
—f_mdsdo(s)x(s)W[x,zm;x(s),z(s)], 1)

where

1 ’
G(x,ysx',y')= 5= e POV Kg[pN(x—x") 4+ (y—y')°].
(2)

Length is measured in units of half a unit cell, a,
p=av/2D is the dimensionless velocity, and D is the diffu-
sion constant. For an infinite tilted array of identical fingers

A

\y

FIG. 1. A late-stage growth pattern obtained for a numerical
simulation of the phase-field model for large undercooling (A=0.8)
and strong anisotropy, reprinted from Ref. [10].
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FIG. 2. Solution of a tilted array of dendrites for A=0.79,
dy=0.01, and €=0.1. The dimensionless velocity is p=4.25, and
the tilt angle is Q=11.7°.

with tilt angle €}, it is sufficient to solve {(x) inside a unit
cell, x € (—1,1), applying the translational relation

{(x+2n)={(x)+2ntanQ, n=0,x1,*2,... . (3)
The numerical procedure is then similar to the one employed
to find parity-broken dendrites (see Ref. [9] for details). If
{(x) is discretized into N points, it forms together with p
and ) a total of N+2 unknowns. These are determined by
Eq. (1) evaluated at the N—2 interior points, supplemented
by boundary conditions for { and {’ on both ends. This set of
nonlinear algebraic equations is then solved by Newton’s
method.

In Fig. 2 we show a tilted array of dendrites obtained
using the above procedure. The velocity as function of su-
persaturation is plotted in Fig. 3 for d;=0.01 and €=0.1
(we consider here only the fastest branches of solutions
which correspond to the most stable ones). Solutions of un-
tilted arrays are identical to those of a single symmetric den-
drite in a channel. A branch of untilted arrays exists here for
A=0.62. At A=0.75 a branch of tilted arrays bifurcates off
the branch of the untilted ones. The tilted dendrites are faster
by a few percent. The difference in the velocities is relatively
small as p is large (=2.5); hence the diffusion field near the
tip of the dendrite is almost unaffected by the relative posi-
tion of the neighboring dendrites.

The appearance of tilted arrays is related to a parity-
breaking instability of the untilted array. To calculate the
stability spectrum of an array of dendrites, we adapt the
method which was employed for arrays of Saffman-Taylor
fingers [11], and for cellular patterns in directional solidifi-
cation [12]. The basic steps are to consider the time-
dependent evolution equation of the interface, and substitute
a solution of the form

{(x,0)={(x)+ 8(x)e®, 4)

FIG. 3. Velocity versus supersaturation for untilted (open dots)
and tilted (solid dots) arrays of dendrites. The inserted plot gives the
tilt angle as function of supersaturation.

where {(x) is the stationary solution, and §(x) is a small
perturbation. We use the standard quasistatic approximation.
As {(x+2n)={(x), the linearized operator acting on 8(x)
is also periodic, and therefore it is possible to construct
Bloch eigenstates of the form

k
S(x)=e"'2%¢Y(x), ®)

where k € (0,7r) is the wave number of the modulation, and
Y(x+2n)=i(x). It is then possible to separate the stability
equation into its real and imaginary parts, obtaining two
coupled eigenvalue equations for w. Repeating this proce-
dure for all k£, a band structure of the stability spectrum,
w(k), is obtained.

In Fig. 4 we plot the two least stable eigenvalues, w, as a
function of the Bloch wave number for A=0.75 (i.e., just
above the bifurcation point). The symmetric mode necessar-
ily vanishes for k=0, due to the translational invariance in y.
For small values of k, w is positive, but becomes increas-
ingly negative for larger k. The antisymmetric mode has a
positive eigenvalue for k= 0. The zero mode due to the trans-
lation symmetry in x has been eliminated by our choice of
parametrization of the perturbation, (4), since &(x) for such a
mode is unbounded. An unstable antisymmetric mode of in-
finite wavelength is precisely the tilt instability we looked
for. Table I shows that the appearance of the branch of tilted
arrays coincides with the onset of the unstable mode. Also
for the antisymmetric mode, w becomes negative for larger
k.

Another noteworthy point is that antisymmetric modes for
k=1 are identical to the antisymmetric modes for a single
finger in the channel geometry. The eigenvalues of the high-
est antisymmetric mode as function of A are given in Table I
for k=0 and k= 7. As described above, the onset of the tilt
instability occurs slightly below A=0.75. For larger A,
w(k=0) increases as the entire band becomes less stable,
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FIG. 4. Eigenvalues of the least stable modes as function of the
Bloch wave number for A=0.75. The open (solid) dots represent
the least stable symmetric (antisymmetric) mode.

until for A=0.76 it becomes entirely unstable. At this point,
where w(k=)=0, a second bifurcation is expected to
occur—the appearance of mirror-image couples of parity-
broken dendrites. We checked, and indeed found such solu-
tions to emerge at that point. Thus the instabilities respon-
sible for the appearance of these two apparently different
types of parity-broken patterns are nothing but the two ex-
treme points of the same band of the stability spectrum of an
array of symmetric dendrites.

The bifurcation to the tilted pattern is, of course, one of
the basic instabilities for cellular patterns characterized by
Coullet and Iooss [13]. As such, it is directly analogous to
the bifurcation to traveling waves in directional solidification
[12]. Similarly, parity-broken states exist in both systems.
However, whereas in directional solidification these bifurca-
tions can be traced back to the interaction of the g-2g un-
stable modes of the planar interface, no such connection can
be made in our case where the cells are intrinsically of infi-
nite amplitude. For this reason, the existence of these new
patterns in solidification eluded investigators for a very long
time.

The stability diagram presented in Fig. 4 merits further
discussion. The relative stability of the large k¥ modes, com-
pared to the k=0 mode, is contrary to the known behavior
for arrays of Saffman-Taylor fingers [11]. In that system, the
high-k modes were increasingly. unstable, reflecting the pres-
ence of a renormalized Mullins-Sekerka instability at long
length scales. In the present case, there appears to exist a

TABLE I. Eigenvalues of the least stable antisymmetric mode for
k=0 and k=r.

A o (k=0) w (k=)
0.65 —0.001 —0.09
0.67 —0.005 —0.03
0.69 —0.009 —0.06
0.71 -0.010 —0.10
0.73 —0.003 —0.06
0.75 +0.017 —0.02
0.77 +0.064 +0.05
0.79 +0.165 +0.16

restoring force for short-wavelength modulation of the ar-
ray’s front. Such a restoring force acts like an effective sur-
face tension, tending to preserve a smooth front (envelope).
The existence of a stable envelope for sufficiently high un-
dercooling has been previously demonstrated in the context
of mean-field theories for algorithmic growth models [14]. It
has been suggested that a stable envelope is an intrinsic fea-
ture of solidification at finite undercooling. The relevant
length scale for this restabilization has not yet been analyzed,
but is presumably related to the diffusion length. This would
explain the absence of such restabilization in the case of
Saffman-Taylor fingers. Furthermore, the stability of the en-
velope appears to be correlated to the internal branching
structure of the pattern [15]. Our calculation provides a rig-
orous evidence of an envelope stabilizing mechanism, and
hopefully will shed light on the physical origins of this phe-
nomenon, and its impact on the large scale dynamics of the
solidification process.

To conclude, we demonstrated that the range of steady-
state solutions for solidification patterns is much richer than
has been previously believed. It is plausible that the scope of
solutions is even wider, in particular when considering the
arrangement of multiple growth elements into a global mor-
phology. Completely open yet is the question of what deter-
mines the dynamically selected patterns when there exists
more than one stable solution.
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